
Party Parrot
Solana Smart Contract Security

Audit

Prepared by: Halborn

Date of Engagement: August 2nd, 2021 - August 24th, 2021

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) OUTDATED DEPENDENCY - LOW 13

Description 13

Code Location 13

Risk Level 13

Recommendation 13

Remediation Plan 14

3.2 (HAL-02) ARITHMETIC ERRORS - LOW 15

Description 15

Code Location 15

Recommendation 16

Reference 16

Remediation Plan 16

3.3 (HAL-03) UNSAFE RUST CODE USAGE - INFORMATIONAL 17

Description 17

1

Result 18

Risk Level 19

Recommendation 19

Remediation Plan 19

3.4 (HAL-04) LOW TEST COVERAGE - INFORMATIONAL 20

Description 20

Result 20

Risk Level 20

Recommendation 21

Remediation Plan 21

4 MANUAL TESTING 22

Description 23

4.1 WITHDRAW AMOUNT ON BEHALF OF OTHER USER 23

Description 23

Code Location 23

Results 24

4.2 BORROW AMOUNT ON BEHALF OF OTHER USER 25

Description 25

Code Location 25

Results 26

5 FUZZING 26

5.1 FUZZING UNSAFE RUST DEPENDENCIES 28

Description 28

Results 28

6 AUTOMATED TESTING 29

6.1 VULNERABILITIES AUTOMATIC DETECTION 31

Description 31

2

Results 32

6.2 UNSAFE RUST CODE DETECTION 33

Description 33

Results 34

6.3 RUST UNDEFINED BEHAVIOUR TESTING 35

Description 35

Results 35

References 36

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 08/19/2021 Nishit Majithia

0.5 Document Edit 08/22/2021 Nishit Majithia

0.9 Document Edit 08/23/2021 Timur Guvenkaya

1.0 Final Version 08/25/2021 Gabi Urrutia

1.1 Remediation Plan 08/27/2021 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Nishit Majithia Halborn Nishit.Majithia@halborn.com

Timur Guvenkaya Halborn Timur.Guvenkaya@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Nishit.Majithia@halborn.com
mailto:Timur.Guvenkaya@halborn.com

5

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

The Parrot Protocol is a DeFi network built on Solana that will include

the stablecoin PAI, a non-custodial lending market, and a margin trading

vAMM. These are all use cases designed to solve one single problem: making

value locked in DeFi systems accessible.

PartyParrot engaged Halborn to conduct a security assessment on their

Smart contracts beginning on August 2, 2021. The security assessment

was scoped to the smart contract provided in the Github repository

gopartyparrot/parrot-program and an audit of the security risk and im-

plications regarding the changes introduced by the development team at

Apricot prior to its production release shortly following the assessments

deadline.

1.2 AUDIT SUMMARY

The team at Halborn was provided several weeks for the engagement and as-

signed two full time security engineers to audit the security of the smart

contract. The security engineers are blockchain and smart-contract secu-

rity experts with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit to achieve the following:

• Ensure that smart contract functions are intended.

• Identify potential security issues with the smart contracts.

Though this security audit’s outcome is satisfactory, only the most

essential aspects were tested and verified to achieve objectives and

deliverables set in the scope due to time and resource constraints. It

is essential to note the use of the best practices for secure smart-

contract development.

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/gopartyparrot/parrot-program/tree/4afe638e60c4fe72d2393cfa4c9f24d14b8376f1

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual view of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

smart contracts and can quickly identify items that do not follow security

best practices. The following phases and associated tools were used

throughout the term of the audit:

• Research into architecture, purpose, and use of the platform.

• Manual code review and walkthrough.

• Manual assessment of use and safety for the critical Rust vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual assessment to determine access control issues such as miss-

ing ownership checks, missing signer checks, and solana account

confusions.

• Fuzz testing. (Halborn custom fuzzing tool)

• Checking the test coverage. (cargo tarpaulin)

• Scanning of Rust files for vulnerabilities. (cargo audit)

• Detecting usage of unsafe Rust code. (cargo-geiger)

• Detecting Rust undefined behaviour. (Miri)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security in-

cident, and the IMPACT should an incident occur. This framework works for

communicating the characteristics and impacts of technology vulnerabili-

ties. It’s quantitative model ensures repeatable and accurate measurement

while enabling users to see the underlying vulnerability characteristics

that was used to generate the Risk scores. For every vulnerability, a

risk level will be calculated on a scale of 5 to 1 with 5 being the

highest likelihood or impact.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

Code into https://github.com/gopartyparrot/parrot-program/tree/4

afe638e60c4fe72d2393cfa4c9f24d14b8376f1/programs/parrot/src folder.

Specific commit of platform: commit 4afe638e60c4fe72d2393cfa4c9f24d14b8376f1

OUT-OF-SCOPE:

Other smart contracts in the repository and economics attacks.

Third party connections/connectivity.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 2 2

IM
PA
CT

LIKELIHOOD

(HAL-01)
(HAL-02)

(HAL-03)

(HAL-04)

10

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

OUTDATED DEPENDENCY Low RISK ACCEPTED

ARITHMETIC ISSUES Low RISK ACCEPTED

UNSAFE RUST CODE USAGE Informational ACKNOWLEDGED

LOW TEST COVERAGE Informational ACKNOWLEDGED

11

EX
EC

UT
IV

E
OV

ER
VI

EW

12

FINDINGS & TECH
DETAILS

3.1 (HAL-01) OUTDATED DEPENDENCY -
LOW

Description:

Partyparrot is using solana dependency version 1.6.3 which is not the

last solana version. Also anchor version is too old compare to the latest

one 0.13.x. Crate for fixed point number which is fixed is also old. It

is always recommended to use the latest solana program version to avoid

already fixed issues.

Code Location:

Listing 1: Cargo.toml (Lines 22,23,24,25)

21 [dependencies]

22 fixed = "1.7.0"

23 anchor -lang = "0.5.0"

24 anchor -spl = "0.5.0"

25 solana -program = "1.6.3"

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

Halborn recommends to use the latest possible version of solana dependency

(0.7.4 at the moment of this audit) unless rust programs are bounded to

specific versions. Also use the latest version for fixed and anchor

crates.

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

RISK ACCEPTED: Party Parrot team is not considering to upgrade the anchor

crate at the moment.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) ARITHMETIC ERRORS -
LOW

Description:

The most serious arithmetic errors include integer overflow/underflow

. In computer programming, integer overflow/underflow occurs when an

arithmetic operation attempts to create a numeric value that is outside

of the range that can be represented with a given number of bits -- either

larger than the maximum or lower than the minimum representable value.

Although integer overflows and underflows do not cause Rust to panic in

the release mode, the consequences could be dire if the result of those

operations is used in financial calculations.

Code Location:

Integer Overflow/Underflow

Listing 2: math.rs

27 let delta_decimal =

28 price.price_decimal as i16 + price.token_decimal as i16 -

price.bid_token_decimal as i16;

Listing 3: math.rs

63 let delta_decimal =

64 price.price_decimal as i16 + price.token_decimal as i16 -

price.bid_token_decimal as i16;

Division

Listing 4: math.rs

34 if delta_decimal > 0 {

35 collateral_amount_in_debt_token =

collateral_amount_in_debt_token.div(ten_exponent)

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

36 } else {

Listing 5: math.rs

75 } else {

76 fp_repay_collateral_amount = fp_repay_collateral_amount.

div(ten_exponent);

77 }

78 fp_repay_collateral_amount = fp_repay_collateral_amount.div(

Fix:: from_num(price.price));

Recommendation:

It is recommended to use vetted safe math libraries(like checked_add

, checked_div) for arithmetic operations consistently throughout the

smart contract system. Consider using Rust safe arithmetic functions for

primitives rather than standard arithmetic operators.

Reference:

Safe arithmetic operations for primitives: u8, u32, u64

Remediation Plan:

RISK ACCEPTED: Party Parrot team considers acceptable the arithmetic in

this context, because the debt type owners chooses the asset types, so

decimals will not overflow.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://doc.rust-lang.org/std/primitive.u8.html
https://doc.rust-lang.org/std/primitive.u32.html
https://doc.rust-lang.org/std/primitive.u64.html

3.3 (HAL-03) UNSAFE RUST CODE
USAGE - INFORMATIONAL

Description:

Rust code that uses the unsafe keyword is considered unsafe since all of

the memory safety guarantees of Rust are not enforced there.It means that

the code might be prone to vulnerabilities that would’ve been prevented

by the compiler such as Buffer overflow, Double free, Use After free,

and more.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Result:

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

After cloning the repository, Halborn installed and executed cargo geiger

on the in scope program. The results show that many core components

contain unsafe Rust code.

Risk Level:

Likelihood - 1

Impact - 2

Recommendation:

It is recommended to always double check unsafe Rust code in your own

codebase and monitor any core dependencies that contain unsafe Rust in

case of any found vulnerabilities.

Remediation Plan:

ACKNOWLEDGED: Party Parrot team claims that the use of certain dependen-

cies is out of their control.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) LOW TEST COVERAGE -
INFORMATIONAL

Description:

Checking the code by automated testing (unit testing or functional test-

ing) is a good practice to be sure all lines of the code work correctly.

Halborn used an automatic tool to discover the test coverage. This is

also known as “code coverage”. The tool used by the auditors is a rust

utility called cargo tarpaulin.

Result:

After cloning the repository, Halborn installed and executed cargo

tarpaulin on the libraries on the in scope components. The coverage

results ended up determining that 40.78% of the lines of rust code were

covered with unit/function tests. Details on which components/libraries

have coverage are provided in the output on the next page.

Risk Level:

Likelihood - 1

Impact - 1

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to have the developers enhance the code coverage to

have as much possible tests to check all the functionalities of the ledger

platform. This will ensure the production release functions as intended.

Remediation Plan:

ACKNOWLEDGED: Party Parrot team claims that most of the tests are inte-

gration tests, and not captured by rust tests. So they consider that the

test coverage is acceptable.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

22

MANUAL TESTING

Description:

Custom tests are useful for developers to check if functions and per-

missions work correctly. Furthermore, they are also useful for security

auditors to perform security tests behaving like a malicious user. Then,

auditors manually manipulated inputs to check the security in the smart

contracts.

4.1 WITHDRAW AMOUNT ON BEHALF OF
OTHER USER

Description:

unstake() method requires just amount as an argument. Since unstake() is

public function, one can pass Unstake object and amount value to withdraw

the amount on behalf of other users. But it is not possible due to derived

macro account for anchor_lang makes sure correct value for vault owner,

debt token, collateral token holder etc in passed Unstake object.

Code Location:

Listing 6

1 #[derive(Accounts)]

2 pub struct Unstake <'info > {

3 debt_type: ProgramAccount <'info , DebtType >,

4

5 #[account(mut , has_one = debt_type)]

6 vault_type: ProgramAccount <'info , VaultType >,

7

8 #[account(mut , "& debt_type.debt_token == debt_token.

to_account_info ().key")]

9 debt_token: CpiAccount <'info , Mint >, //to get token decimal

10

11 #[account(mut , has_one = vault_type)]

12 vault: ProgramAccount <'info , Vault >,

13

14 #[account ("& vault_type.price_oracle == oracle.key")]

23

MA
NU

AL
TE

ST
IN

G

15 oracle: AccountInfo <'info >,

16

17 #[account(mut , signer , "& vault.owner == vault_owner.key")]

18 vault_owner: AccountInfo <'info >,

19

20 #[account (" token_program.key == &token ::ID")]

21 token_program: AccountInfo <'info >,

22

23 #[account(

24 mut ,

25 "& vault_type.collateral_token == collateral_token.

to_account_info ().key"

26)]

27 collateral_token: CpiAccount <'info , Mint >,

28

29 #[account(

30 mut ,

31 "& vault_type.collateral_token_holder ==

collateral_token_holder.key"

32)]

33 collateral_token_holder: AccountInfo <'info >,

34

35 // PDA of vault_type

36 collateral_token_holder_authority: AccountInfo <'info >,

37

38 #[account(mut)]

39 receiver: AccountInfo <'info >,

40

41 clock: Sysvar <'info , Clock >,

42 }

Results:

Struct Unstake checks vault owner, debt token, collateral tokens,

collateral token holder account etc, so it is not possible to perform

unstake on behalf of other user.

24

MA
NU

AL
TE

ST
IN

G

4.2 BORROW AMOUNT ON BEHALF OF
OTHER USER

Description:

borrow() method requires just amount as an argument. Since borrow() is

public function, one can pass Borrow object and amount value to borrow

the amount on behalf of other users. But it is not possible due to

implemented checked for vault owner, vault token, debt originator etc in

passed Borrow object.

Code Location:

Listing 7

1 pub struct Borrow <'info > {

2 debt_type: ProgramAccount <'info , DebtType >,

3

4 #[account(mut , has_one = debt_type)]

5 vault_type: ProgramAccount <'info , VaultType >,

6

7 #[account ("& vault_type.collateral_token ==

collateral_token_mint.to_account_info ().key")]

8 collateral_token_mint: CpiAccount <'info , Mint >, //to get token

decimal

9

10 #[account(mut , has_one = vault_type)]

11 vault: ProgramAccount <'info , Vault >,

12

13 #[account(signer , "& vault.owner == vault_owner.key")]

14 vault_owner: AccountInfo <'info >,

15

16 #[account (" token_program.key == &token ::ID")]

17 token_program: AccountInfo <'info >,

18

19 #[account ("& debt_type.debt_token == debt_token.

to_account_info ().key")]

20 debt_token: CpiAccount <'info , Mint >, //use Mint to get token

decimal

21

25

MA
NU

AL
TE

ST
IN

G

22 #[account(mut , "& debt_type.debt_originator == debt_originator.

key")]

23 debt_originator: AccountInfo <'info >,

24

Results:

Struct Borrow checks vault owner, vault token, debt originator etc, so

it is not possible to perform borrow on behalf of other user.

Also method increase_debt() checks the debt_ceiling to prevent unlimited

borrow.

26

MA
NU

AL
TE

ST
IN

G

27

FUZZING

5.1 FUZZING UNSAFE RUST DEPENDENCIES

Description:

Since the program uses some core dependencies that contain unsafe Rust

code, Halborn used some custom fuzzing tools and industry standard

tools like libfuzzer, honggfuzz and fzero_fuzzer to fuzz some of those

dependencies for a certain period.

Results:

Due to the time constraints, only two handpicked dependencies were fuzzed

for a certain amount of time. All fuzzing tests were positive ie. no

issues were detected at this time.

• serde-json: Fuzz Code

• anyhow: Fuzz Code

28

FU
ZZ

IN
G

29

FU
ZZ

IN
G

30

AUTOMATED TESTING

6.1 VULNERABILITIES AUTOMATIC
DETECTION

Description:

Halborn used automated security scanners to assist with detection of

well known security issues and vulnerabilities. Among the tools used

was cargo audit, a security scanner for vulnerabilities reported to the

RustSec Advisory Database. All vulnerabilities published in https://

crates.io are stored in a repository named The RustSec Advisory Database.

cargo audit is a human-readable version of the advisory database which

performs a scanning on Cargo.lock. Security Detections are only in

scope. All vulnerabilities shown here were already disclosed in above

report. However, to better assist the developers maintaining this code,

the auditors are including the output with the dependencies tree, and

this is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

31

AU
TO

MA
TE

D
TE

ST
IN

G

Results:

32

AU
TO

MA
TE

D
TE

ST
IN

G

6.2 UNSAFE RUST CODE DETECTION

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-geiger, a security tool that lists statistics related to the usage

of unsafe Rust code in a core Rust codebase and all its dependencies.

33

AU
TO

MA
TE

D
TE

ST
IN

G

Results:

34

AU
TO

MA
TE

D
TE

ST
IN

G

6.3 RUST UNDEFINED BEHAVIOUR TESTING

Description:

Halborn used automated security scanners to assist with detection of

different classes of undefined behaviour in Rust. Among the tools used

was Miri, an experimental interpreter for Rust’s mid-level intermediate

representation (MIR). It can run binaries and test suites of cargo projects

and detect certain classes of undefined behavior, for example:

• Out-of-bounds memory accesses and use-after-free

• Invalid use of uninitialized data

• Violation of intrinsic preconditions (an unreachable_unchecked being

reached, calling copy_nonoverlapping with overlapping ranges, . . .)

• Not sufficiently aligned memory accesses and references

• Violation of some basic type invariants (a bool that is not 0 or 1,

for example, or an invalid enum discriminant)

• Experimental: Violations of the Stacked Borrows rules governing

aliasing for reference types

• Experimental: Data races (but no weak memory effects)

On top of that, Miri will also tell you about memory leaks: when there

is memory still allocated at the end of the execution, and that memory

is not reachable from a global static, Miri will raise an error.

Halborn ran predefined tests that exist in the program through Miri to

catch any undefined behaviour.

Results:

All tests are passing without any issues raised by Miri

35

AU
TO

MA
TE

D
TE

ST
IN

G

References:

Rust Undefined Behavior

36

AU
TO

MA
TE

D
TE

ST
IN

G

https://doc.rust-lang.org/reference/behavior-considered-undefined.html

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Result
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Result
	Risk Level
	Recommendation
	Remediation Plan

	MANUAL TESTING
	Description
	WITHDRAW AMOUNT ON BEHALF OF OTHER USER
	Description
	Code Location
	Results

	BORROW AMOUNT ON BEHALF OF OTHER USER
	Description
	Code Location
	Results

	FUZZING
	FUZZING UNSAFE RUST DEPENDENCIES
	Description
	Results

	AUTOMATED TESTING
	VULNERABILITIES AUTOMATIC DETECTION
	Description
	Results

	UNSAFE RUST CODE DETECTION
	Description
	Results

	RUST UNDEFINED BEHAVIOUR TESTING
	Description
	Results
	References

